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A collapse transition in a directed walk model 

R Brak, A J Guttmann and S G Whittington 
Deparunenl of Malhematia, Ihe University of Melbourne, Parkville, Victoria 3 5 2 ,  
Australia 

Received 6 November 1991 

AbsImcL W mnsider a directed walk model of linear polymers in dilute solution, with 
an energy asxlciated With the number of near-neighbour "ads  in the walk. For this 
model we a n  derive an exact expression for the generating function io WO variables 
conjugale to the number of eeps and the number of contacts. We discus the analytic 
slmclure of lhis generating funclion and idenlify the Vansition mrresponding lo collapse. 

1. Intmduction 

A self-avoiding walk on a regular lattice is a good model of the equilibrium properties 
of a linear polymer molecule in dilute solution in a good solvent. If near-neighbour 
interactions are suitabiy weighted the (iniinitej wak is thought to undergo a transition 
which models the internal transition in a polymer brought about by the dominance 
of attractive forces between monomers at low temperatures. This transition has been 
studied theoretically for many years (see, e.g., Mazur and McCrackin 1968, Finsy et 
al 1975, Ishinabe 1985, Saleur 1986, Privman 1986, Chang et al 1988, Meirovitch and 
Lim 1989 and many other papers). 

In this paper we consider a simpler variant of this model. We consider self- 
avoiding walks on the square lattice. in which no steps are allowed in the west 
direction. If we are interested only in the number of ns tep  walks, this model is 
trivially easy to solve. However, if we require the number c , (m)  of ns tep  walks 
with m near-neighbour contacts the problem is more difficult. An example of such a 
walk, illustrating the contacts, is shown in figure 1. This model, together with some 
varianrs. has been studied by a number of workers (Zwanzig and Lauritzen 1%8: 
Lauritzen and Zwanzig 1970, Nordholm 1973, Veal ef a/ 1990, Binder et a/ 1990). In 
particular, Binder et a1 used transfer matrix methods to show that the model has a 
phase transition, and located the critical point. 

Our approach to the problem is quite different from that used by Binder et al. 
In section 2 we derive some rigorous results about the qualitative behaviour of the 
limiting free energy of this model. Then in section 3 we use a method originally 
suggested by Temperley (1956) to derive recurrence relations which determine the 
generating function C(z,y) of c , ( m )  and solve these to obtain an expression for 
C(z, y). In section 4 we investigate the analytic structure of G and, in section 5, we 
identify the location of the collapse transition. 

0305.4470,92fl92437+10SO4.50 @ 1992 IOP Publishing Ud 2437 
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F@m t An example of a directed walk (full line) shauing the neamscneighbur 
mntacls (broken lines). 

2. Convexity and continuity of the free energy 

We consider self-avoiding walks on the square lattice with the added restriction that 
no step can be taken in the west direction. We write cn(m) for the number of walks, 
starting at the origin, wifh fheirjirst step in fhe easf direction, having a total of n steps, 
and with m near-neighbour contacts. We define the partition function 

Z,(x) = c,(m)zn. (2.1) 
m>0 

(x is the 'temperature variable' and c is an effective monomer-monomer 
interaction energy.) We note that Z,&(l) is the total number of n-step walks with 
these restrictions. It is easy to show that 

n(i j I iim n-' iog Z,(i j = iog(i + v5). @.2j 

Consider a walk with n1 steps and mi contacts. If we add an additional step in 
the east direction, and then translate a walk with nz steps and m2 contacts so that 
its first vertex coincides with the right-most vertex of this additional step, we obtain 
a walk with nl  + nz + 1 steps and ml + mz contacts. Since. we can choose the first 
walk in cn,(ml)  ways and the second walk in cn2(m2) ways and divide the number 
of contacts between the two sub-walks, we obtain the inequality 

n-m i 
I 

cn+l(m) 3 C C * * ( n 4 C " - n , ( ? ' ~  - 9). (2.3) 
m ,  

T h i o  : ~ n n . m n l : h ,  rnnpthnr ..<+h r h n  f - n b  +hot 7 / - . \ ] I n  :D h n . i n A a r l  ohnwa fnr - 1 - 
1.10 ",C'IU"',J, L"~'LL.C, n.u. L L l C  L a c ,  LII'ILL U % \ * ,  0 L l v U L l Y C Y  '.YV.- I". L , W) 

implies the existence of the limit 

"-m Iim n-'log Z,(z) E .(x) < cu (2.4) 

for all x < 00. 

Therefore to prove that K ( Z )  is log-convex it sullices to show that 
Since Z,(z) is monotone increasing in x, ~ ( x )  is monotone nondecreasing. 
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This follow immediately from 

on taking logarithms, dividing by n and letting n --* 03. Since n(z) is convex (and 
bounded above for finite z) it is continuous and has left and right derivatives at every 
z < CO. Moreover, both derivatives increase with increasing I. 

For z 6 1 it follows from monotonicity that n(0) 6 n(z) 6 n(1) and hence that 

l im n(z)/ logz = 0. 
2-o t  

Fbr z 2 1 monotonicity implies that K ( Z )  2 ~(1). In addition 

K ( Z )  a C,(mm,,)zm=- (2.8) 
where mmax is the maximum number of contacts, for given n. Since the number 
of "acts will be maximal for a walk which 'fills' a square it is easy to see that 
mmax = n + o ( n ) .  Similarly, c,,(mmax) is the number of Hamiltonian walks with n 
steps, with the restriction that no steps are allowed in the west direction. Clearly 

- a siiiiar argument 

and (2.9) and (2.11) imply that 

lim rc(z)/logz = 1. 
r-+m 

We shall find it convenient to define the generating function 

n 

(2.12) 

where we have used (2.4) to obtain the final result. At tixed +, C( z, y) converges for 
y < e-<(=) which defines a boundary in the (2, y)-plane. If we write this boundary 
curve as y = y,(z) then it follows from (2.12) that, for large I, y,(z) - z-l. 

In the next section we shall derive an  explicit expression for C( 2, y). 
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3. The form d the generating function 

Let c;(m) be the number of walks with n steps and m contacts, with the first step in 
the east direction followed by precisely r steps in either the north or south direction. 
We define the generating function 

sa that 

We shall abbreviate g,(z,y) as gr when no confusion is liiely to occur. We can now 
write down recurrences for the g, as follows: 

go = Y + Y(go+ 91 +g,+ = Y + YG (3.3) 

By eliminating terms we then derive the following recurrence relation 

grtl - ( 1  + z)yg7 - ( 1  - ")'*YV+*S, + zyZg,-, = 0. (3.6) 

'lb solve this difference equation we define q = zy and try the solution 

m 

Sr = A' Pz(q )qmv  (3.7) 
m=O 

with p o ( q )  = 1. Substituting we find that this is a solution if 

(3.8) 

(3.9) 

(3.10) 
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(provided that the denominator is not equal to zero). Quation (3.9) has two solutions 
A,  = y and A, = q. The recurrence relation (3.10) can he readily solved to give 

(3.11) 

and the general solution for gr for T > 0 is 

g, = A,g!') + A,#) (3.12) 

where A, and A, are arbitrary functions of y and q determined hy the initial condi- 
tions and 

(3.13) 

2I determine the value of A, we first note that if we fix z > 1 and 0 < y < 1 
such that zy < 1/ (1  + a), and then take the limit T -, 00, then lim q-rg!l) = 0, 
lim q-'g!') = 1 and lim q-'g, = 0. It then follows from (3.12) that A, = 0. 

2I determine A, we proceed as follows. We note that equation (3.12) is valid 
only for r 2 1.  m a t  is, go is not a solution of (3.6) for T = 0. However, if we define 
h, to be A,g$') then we note that go = i ho ,  so that 

(3.14) ' A  g o = ?  1 9 0  =Y+YG. 

Similarly 

g1 = A,gi') = a + bG (3.15) 

where a = y2(2 + y - xy)  and b = y2(1 + z + y - zy). Hence we have a pair of 
simultaneous equations in A, and G, which c a n  he solved to give 

(3.16) 

Although we cannot use (3.16) to obtain a solution when 4 = 1, this is possible if we 
return to the recurrence relation (3.6). Thus, substituting q = 1 in (3.6) gives 

4. Analytic structure of G( z , g) 

Since the analytic structure of G ( x , y )  is related to that Of g?), we first consider 
this. I t  is convenient to work in the complex y-plane and so we consider G and as 
functions of y with x fixed and real. We first note that the denominator of the lth 
term in 9:') is zero for qk = 1 or q k  = x (for IC = 1 , .  . . , 1 ) .  Thus for these values 
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of q, gil) is infinite. The circle lyl = 1/x is clearly a natural boundaly, whilst it is 
straightfonvard to show that the points y = W ~ X ' - ' - ~  (k = 1 ,..., m, p =  1,. ..,k, 
wp a kth root of unity) are isolated simple poles. The circle IyI = 1/z is a set of 
accumulation points for these poles, all of which occur between the circles IyI = 1 
and IyI = 1/z. For y not equal to any of these values the individual terms are 
bite and the DAlembert ratio test shows that the series is convergent, so that g?) 
is analytic in the remaining complex y-plane. 

From now on we confine our attention to the real positive yaxis. The singularities 
of G on this axis are obtained by rewriting G in the form 

where 

( 4 4  ( 1 )  ( 1 )  H ( X , Y )  = YSO /g1 ' 

If gil) = 0 it is straightfonvard to show that G is not singular. G is singular at 
the zeros of the denominator (so long as these are not cancelled by corresponding 
zeros of the numerator) and a t  any singularity or the numerator (not cancelled by the 
denominator). 

We now argue that, for fixed x, the point y = 1/x is an accumulation point 
of zeros of the denominator of G and hence an accumulation point of poles of G. 
We have shown that, for y between 1 / z  and 1, 9:) and 91'' both have 1/x  as an 
accumulation point of simple poles. However, in H, the poles from g?) cancel those 
from g;'' leaving H non-singular at the points y = &'-I, k = 1 , .  . . ,CO. Instead, 
H has a pole at the zeros of gill, which occur between each pair of adjacent poles 

Because the poles of gil) h v e  1/x as an accumulation point, so must the zeros, and 
hence the poles of H must also have 1/x as an accumulation point. 

For fixed x. the zeros of the denominator of G arise when H = 2 y 2 / b .  A sketch, 
for y between 1 and 1/x,  of 2y2/b and any function with 1/x as an accumulation 
point of poles, shows that the two plots intersect between each pair of adjacent poles. 
Thus the zeros of the denominator of G have 1/x as an accumulation point. 

We now show that the denominator has no ZTOS in the domain 0 < y < 1/x,  
x > zc, where xc = 3.382975.. . (the solution to a cubic equation given later). For 
this we require a continued fraction representation of H. If we introduce a parameter 
t into g?) as follows 

,.> 

of gil) (i.e. at a point tetween y = xk-I-1 and = x(k+l ) - ' - l  k = 1 , . . . ,CO). 
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x -(Temperature variable) 

Flgure 1 A &etch of the domain of convergence of lhe mnlinued haclion 

which can be written in the form 

where H ( t ; z , q )  = g ( t ; z , q ) / g ( q t ; z , q ) .  Note that H ( l , z , q )  = H ( z , y ) .  Upon 
iteration (4.5) leads to a continued fraction. The domain of convergence of the 
continued fraction can be found using Worpitzky's theorem (Wall 1948). Erst the 
continued fraction is cast in the form 

H ( i ; Z , q ) =  ( 1 + 1 / ~ + ( 1 / ~ - - 1 ) ~ ~ t / ~ ) ( l + b , C )  (4.6) 

where 

and 

-1/x 
b p + l  = ( 1  + 11" + ( I / ~  - i ) q p + 2 t / z ) ( i  + l / x  + (ilZ - i ) q ~ + 3 1 / z ) '  ( 4 4  

The theorem states that the continued fraction C converges if 

I b p t l l < $  p = 1 , 2 ,  .... (4.9) 

A careful investigation of (4.9) shows that C converges for those (real) values of 
2 and y in the domain Z, = { z  2 z c )  n {0 < xy < 1) .  The domain of convergence 
is larger, and is sketched in figure 2. 
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'Ib prove that the denominator of G has no zeros in the domain 0 < y < 1/x ,  
2: > I<, we use an additional result of Worpitzky's theorem, namely 

IC-  $ 1  < $. (4.10) 

Thus, for C real we have $ < C < 2 and hence, in the domain 'D, we have 

(1 + 2 b , ) ( ( l +  1 / x  + ( l / z  - l)q2/x) < f f ( l ; Z , q )  

< ( 1  f I / = +  (1/Z - l )S2/+)(1  261/3). (4.1 1) 

The zeros of the denominator of G (h the form of (4.1)) are given by solutions of 

2 
H ( z , q )  = 1 + z + q ( l / x -  1)' (4.12) 

Thus, (4.11) gives a bound on the left-hand side of (4.12). It is then a simple matter 
of checking whether the range of the right-hand side intersects the range of the 
bounds. Using the monotonic nature of the functions and plotting a few points then 
shows that in the domain 'D there is no intersection. Thus the zeros cannot occur in 
the domain 'D. 

The convergence of the continued fraction on the hyperbola zy = 1 , s  > zc 
shows that H, and hence G, must be finite here. This contrasts with the behaviour 
when the hyperbola is approached from above 'D. The hyperbola is then the locus of 
a set of accumulation point of poles and hence switches between +w and -m with 
increasing frequency. 

We can also use the continued fraction to show that, on the hyperbola xy = 1, the 
only points at which the denominator has a zero are 2: = 1 ,  y = 1 and I = zc, y = 
l/xc. As pointed out to us by Flajolet (private communication), if we formally take 
the limit q -+ 1 then 

which is a simple . .  quadratic equation for H ( 1 ;  x, 1). Thus, 

Substituting into (4.12) gives 

(. - 1 ) ( 2  - 3 2  - - 1) = 0. (4.15) 

Thiis has two real solutions I = 1 and zc = 3.382 975.. , The solution 2: = 1 ,  y = 1 
B cancelled by a corresponding zero in the numerator and so we can discard it. 

Three further zeros can be found exactly: when z = 0 and y = 0.453 397.. . 
(a solution of 1 - 2y - y3 = 0) and when z = 1 and y = -1 * a. Finally, a 
numerical solution of (4.12) shows that there is a line of zeros connecting the points 
(0,0.45, ...), (1 , -1  + fi) and (z , , l /x , ) .  Numerically it becomes more difficult 
to find the line within a prescribed accuracy the closer one approaches the hyperbola 
zy = 1. However, in the next section we show that the line must meet the hyperbola 
at ( x c , l / z J .  
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5. The collapse transition 

The walk model considered here can be interpreted in a number of ways. We consider 
two possible interpretations. R r  the thermodynamics we can choose to have either 
two or three extensive thermodynamic variables, for instance the entropy S, the 
internal energy U with the thud being the number of monomers N .  We denote 
the thermodynamic number of monomers hy N and the number of monomers in a 
particular walk by n. Since the walk is not conlined to a box, we do not have a 
volume variable. If we choose two variables S and U ,  then we we n as a parameter. 
The thermodynamics of this system is then obtained from the statistical mechanics 
using the conventional canonical formalism, for which G is the generating function 
of the canonical partition function 2,. In this case n plays the role of a parametric 
constraint on the size of the system and hence an n-step walk is then the analogue 
of a finite size system, and the thermodynamic limit is the limit n -+ m. 

If however the number of monomers, n is allowed to change then we must have 
three thermodynamic variables, with N = (7%). In this case G becomes a p e r a l u e d  
canonical partition function (Hill 1956), and the thermodynamic limit is the limit 
(n) + m. For finite in) we again have the analogue of a finite sue system. 

In the thermodynamic limit, and under some general conditions, either formalism 
may be used as the averages are equal (Nordholm 1973). In the case of two variabies, 
the radius of convergence of G gives w the canonical free energy in the thermody- 
namic limit (i.e. (2.13)), whilst in the case of three wriables the radius of convergence 
of G occurs where (n) = M (see later). In the (z, y)-plane the locus of singularities 
of G closest to the z-axis gives a line which we refer to as the hemodynamic limit 
boundary or, more briefly, as the bounday. 

IUIIUWJ. IIK average value 

of n at a point ( z , y )  in the plane is given by 

...~ ~~~~ _ . ~ ~ .  L .- I .C-Z . .  .L. L.~~_I._~ E -,,-..- m- we can snuw mar in, B mnnirr. on me wunuary 

For 0 < y 6 e-"(2), z 3 0, G can be written as 

where F( z, y)  is analytic in this region, and hence 

This means that (n) is infinite on the boundary and finite below it (since F has no 
zeros below the boundary). 

The boundary is shown in figure 3. From the arguments in section 4, it is ciear that 
the boundary starts at (0 ,0 .453 , .  . .),passes through (1,0.414,. . .) and, because the 
free energy is continuous, the boundary must meet the hyperbola at (z,,l/z,). (It 
cannot pass below it as G has no singularities below the hyperbola and it cannot 
meet the hyperbola at 2: < zc because G is complex on the hyperbola for z < zc,) 
Beyond this point the boundary coincides with the hyperbola. 

cl ,, UJIIGDpJIIUI L U  " 8 -  urGr,,luuy,,a,r,lL- 

limit, it is on this boundary that the collapse transition occurs. The phase transi- 
tion corresponds to a point of non-analyticity of yc(z). Since the boundary is the 
hyperbola for z 2 zc and a different function for z < zc, the function y,(r) is 
non-analytic with a singularity at zc. Thus we identify zc = 3.382 975 7.. . as the 
position of the collapse transition. 

(n) = y F ' / F +  yer(*) / ( l  - e"(5)y). (5.3) 

A ihe 'wundav., which . W ~  
$y. y ,z\ -,.---"".-",I" ..- *La .l.,.-...,.A.,-"...!- 
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U.0 
I ' I ' I ' I  1 ,  , I . , ' , ,  I , ,  , , ' I  

0.0 0.4 0.8 1.2 1.6 2.0 2 . 4  2.8 1.2 3.6 40 4.4 4.8 

x -(Temperature variable) 
Ftgum 3. A plot of the fugacity variable y against the lemperature variable I, showing 
the thermodynamic limit boundaly before the mllapse point (z.,yc) (full a w e )  and 
after the oollapse point @old hoke" "e) w h e n  it  mincides with L e  hyperbola. Ihe 
remaining part of the hyperbola is also shown (light hoken curve). Exact poinu an the 
boundary are shown with an asterisk. 
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